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Low probability, high severity events such as oil spills or product defects characterize many

sectors of the U.S. economy. A popular approach to mitigate the frequency of such events is

to make firms liable for potential damages in part to incentivize precaution. To understand the

effectiveness of liability regulation we need to know how firms’ precautions respond to changes in

the amount of damages they are liable for.

In settings where a firm faces large potential liabilities from an accident, its liability cannot

exceed its asset value because it may use bankruptcy to avoid further damages. This discrete drop

in firms’ incentives for precautions at their asset value is commonly termed the judgment-proof

problem (Shavell 1986). One common solution used to solve the judgment proof problem is to cap

firms’ level of potential liability. However, determining the liability cap level is a difficult task for a

regulator: higher caps induce firms to undertake greater precautions as they bear a larger share of

liability costs, but setting too high a cap may cause the firm to declare bankruptcy, shifting liability

costs onto the public. This creates ambiguity about a fundamental question in public economics:

What are the efficiency tradeoffs associated with capping liability?

Motivated by this gap in the literature on liability regulation, this paper provides the first

causal evidence of how firms’ precautions responds to the imposition of a negligence standard in

California’s electric utility sector. Between 1999 and 2017, firms faced with covering liabilities due

to power line fires were allowed to recoup these costs through increases in retail electricity prices.

However, since November 2017, utilities have borne liability costs whenever the regulator found

that their imprudence led to an ignition. Using this setting, I estimate an empirical model that

shows how firms’ use of one type of precaution, called a Public Safety Power Shutoff event, changed

following the policy shift. The empirical model uses daily variation in the replacement cost of

structures that are downwind of power lines to estimate how firms’ use of power shutoffs respond

to the entire distribution of potential liability. Since firms in this setting are responsible for the

replacement cost of structures damaged by power line-ignited fires, variation in downwind regions

across days creates exogenous changes in potential liability.

Firms use Public Safety Power Shutoff events to prevent fire ignitions along their power lines.

During a power shutoff, utilities turn the power off on sections of their energy infrastructure when

forecasted climate conditions suggest an ignition is likely to occur. Because electricity must be

running through a power line for an ignition to happen, power shutoffs significantly reduce the
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likelihood of fire and potential liabilities that a firm faces. In contrast, other types of precaution

available to firms such as clearing vegetation away from power lines do not provide the same

assurance because an ignition could still occur.

This is an important setting to study liability regulation. Climate change is increasing the

severity of power line-ignited fires in the western U.S., making it important to understand how

to incentivize firms to prevent ignitions in this setting (Syphard and Keeley 2015). Furthermore,

power line-ignited fires are more damaging than fires from other ignition sources because they

typically occur during high wind speed events when the wind carries vegetation into the line. Since

fires are also more likely to spread rapidly and grow out of control during windy conditions, power

line-ignited fires tend to cause more damage than fires from other sources (Keeley and Syphard

2018). For example, one privately owned utility, Pacific Gas and Electric, faced over $30 billion

dollars in liability from several fires ignited in 2017 and 2018.1 Figure 1 plots total damages in

billions of 2021 dollars by source of fire ignition and shows that, although power line-ignited fires

make up less than one percent of ignitions historically, they account for most of the damage from

fires in California between 2008 and 2019.

My setting also has a key advantage: it allows me to causally estimate the relationship between

the level of liability a firm faces and its precaution using exogenous changes in the direction that

the wind is blowing across days.2 Prior work has typically relied on regulatory changes that cap

the level of liability a firm faces to study this relationship, but in this setting I am able to measure

firms’ responses across the full distribution of potential liabilities that they face.

Using administrative data on precautionary measures taken by the three largest privately owned

utilities in California, I find three results. First, I show that firms’ precaution is positively related

to the level of liability that they face. Since utilities are liable for the cost of replacing structures

damaged by fires that their power lines ignite, I measure liability using this value. In most settings,

causal estimation of the relationship between the level of liability that firms face and precaution is

difficult because liability is likely to be endogenous. My setting allows me to remove this endogeneity

by using daily variation in the replacement cost of structures that lie downwind of each firm’s power

1. Los Angleles Times “Pacific Gas and Electric to file for bankruptcy as wildfire costs hit $30 billion. Its stock
plunges 52%”, January 14, 2019.

2. The privately owned utilities in California’s electric utility industry that I study are representative of most
electric utilities in the United States. In fact, in 2017 privately owned utilities supplied 72% of electricity customers
in the United States (EIA Annual Electric Power Industry Report).
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lines between 2018 and 2020 to generate daily variation in each utility’s potential liability. I estimate

that power shutoffs increase by 100 percent relative to the average likelihood of a shutoff when the

total replacement cost of structures in downwind areas increases by 10 percent ($690 million).

Second, I demonstrate that firm precautions do not increase with liability when total downwind

expected liability is large relative to total firm asset value, providing empirical support for the

judgment proof problem. When zip codes of low or moderate ex-ante fire risk lie downwind of

power lines, firm precautions increase with liability until total liability in each downwind zip code

exceeds 14% of each firm’s total 2022 asset value. However, when high fire risk zip codes lie

downwind, precautions increase with liability until total liability exceeds 8% of firm asset value.

Third, I estimate that firms’ consideration of liability when taking precautions had an ambiguous

impact on short-run welfare across California. Short-run total welfare effects depend consumers’

valuation of lost electricity use during a power shutoff and range between a $6 billion loss and a

$700 million gain. Irrespective of consumers’ valuation, the short-run welfare impact is decreasing

in shutoff duration and varies widely across California zip codes.

These results have several policy relevant implications. I provide an empirical framework to

estimate how firms’ precautionary behaviors change across the distribution of potential liabilities,

a key parameter for determining the liability cap level. Current and past policy proposals have

included limits on the amount of damages homeowners can recover from electric utilities.3 However,

such policy proposals note that it is unclear what level liability should be limited at and how such

limits would distribute costs between homeowners, electricity consumers, and utility shareholders.

Furthermore, I estimate how economic incentives influence the reliability of electricity supply

using a novel dataset of distribution power lines. This is relevant for regulators across the U.S. who

want to incentivize utilities to make investments that improve the reliability of electricity supply and

upgrade aging infrastructure. Because of the projected growth of renewable energy generation in

the United States, the federal government has made upgrades of energy infrastructure a cornerstone

of its energy platform.4 My work in this paper underscores that having detailed administrative

data on distribution networks across the U.S. will be important for effectively upgrading energy

infrastructure.

3. “Allocating Utility Wildfire Costs: Options and Issues for Consideration”, California Legislative Analysts Office,
2019.

4. See https://www.energy.gov/articles/reimagining-and-rebuilding-americas-energy-grid.
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This paper makes three contributions to the literature in public economics. First, it poses

a channel, expected damages, through which liability regulations impact firms’ decisions and

quantifies how the burden of precautionary costs is distributed between firms and electricity

consumers. I show that, when firms bear liability costs, they direct more precautionary effort

to areas with high levels of expected liability until total damages are large relative to firm asset

value. This adds to previous work documenting other determinants of firms’ choice of precaution

such as bankruptcy (Shavell 1986), subjective firm beliefs (Currie and MacLeod 2014), risk aversion

(Shavell 1982), and market structure (Chen and Hua 2017). Furthermore, this result contributes

to a growing literature that examines the determinants of wildfire suppression (Plantinga, Walsh,

and Wibbenmeyer, 2022; Baylis and Boomhower, 2023).

Second, I show how precaution varies across the distribution of potential liabilities that firms

face. Previous research has estimated how capping medical liability impacts doctors’ prescribing

behavior (Helland, Lakdawalla, Malani, and Seabury 2021), medical outcomes (Danzon, 1985;

Kessler and McClellan, 1996; Currie and MacLeod, 2008; Frakes, 2013), and the labor supply

of doctors (Malani and Reif, 2015; Kessler, Sage, and Becker, 2005; Klick and Stratmann, 2007;

Matsa, 2007). Another related literature examines how changes in liability impact toxic waste

discharges and abatement technology adoption (Akey and Appel, 2021; Alberini and Austin, 2002;

Stafford, 2002). Many of these studies estimate how precaution responds to the level of liability

a firm faces at one point in the liability distribution because their variation comes from caps on

liability at a particular value. The empirical strategy in this paper allows me to estimate how

precaution changes across the entire distribution of liability that firms face in practice.

Previous work on the judgment-proof problem by Boomhower (2019) shows that requiring

firms to purchase insurance which covers damages beyond their own assets encouraged greater

production by larger firms with better environmental outcomes in Texas’ oil and gas sector. This

paper complements Boomhower (2019) by directly estimating how firms’ precautions change across

the distribution of potential liability they face. Since requirements to cover damages beyond firm

assets may not be feasible in settings with concentrated market power, such as the electric utility

sector, the estimates in this paper provide relevant information that can be used to implement

other solutions to the judgment-proof problem such as capping liability.

This paper also makes important contributions to a recent literature in environmental economics
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and engineering. I show that liability considerations influence firms’ decision to declare power

shutoffs. Previous work by Abatzoglou, Smith, Swain, Ptak, and Kolden (2020) applied one utility’s

publicly stated climate thresholds for declaring power shutoffs to observed weather data during

2019, finding that the utility used shutoffs more than would be predicted by its own decision rules.

I provide an economic explanation for this overuse of power shutoffs by documenting the role of

liability in determining firms’ precaution.

I also provide evidence that utilities’ use of power shutoffs has heterogeneous effects across

California. This adds to a recent literature that estimates the costs and benefits of public safety

power shutoffs in California (Sotolongo, Bolon, and Baker, 2020; Wong-Parodi, 2020; Zanocco,

Flora, Rajagopal, and Boudet, 2021; Mildenberger, Howe, Trachtman, Stokes, and Lubell, 2022).

Finally, I provide the first evidence of fire liability’s impact on firms in the electric utility

industry. Yoder (2008) shows that the number of fires escaping from private landowners’ property

during a prescribed burn declines following the implementation of strict liability regulations. I add

to this evidence by causally showing that electric utilities increase precautionary actions to prevent

fire ignitions along their power lines in response to greater liability for fire damages.

The rest of this paper proceeds as follows: section 1 provides background on liability regulation

for power line-ignited fires in California and utilities’ ignition prevention decision environment.

Section 2 presents a conceptual framework with testable predictions of liability regulation’s effect

on utility’s precautionary effort. Section 3 develops an empirical strategy to causally estimate

the relationship between liability and shutoffs. Section 4 describes the data sources used in this

analysis, section 5 presents the results, and section 6 concludes and suggests opportunities for future

research.

1 Background

1.1 Institutional Background

This paper focuses on electricity distribution to residential and commercial consumers, the final

link in the U.S. electricity supply chain which consists of generation, transmission, and distribution.5

5. According to the CPUC post-event reports, transmission lines account for less than 1% of lost customer hours
related to power shutoffs to prevent fire ignitions. Therefore, I exclude transmission lines from the analysis in this
paper.
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Electric distribution utilities are generally considered natural monopolies and most are regulated by

Public Utility Commissions (PUCs). The California Public Utility Commission (CPUC) mandate

states that its goal is to provide “. . . access to safe, clean, and affordable utility services and

infrastructure.”

PUCs’ primary regulatory tool to influence utilities’ actions is called a rate case. CPUC defines

rate cases as quasi-judicial “proceedings used to address the costs of operating and maintaining

the utility system and the allocation of those costs among customer classes.” At each rate case

proceeding, the PUC determines the electricity price schedules which a utility can charge customers

until its next rate case proceeding. The three largest Investor Owned Utilities (IOUs) in California

each have their own separate rate cases every three years. In this way, most transmission and

distribution utilities in the U.S. face price cap regulation with periodic adjustment of the cap. The

PUC adjusts the price schedule so that each utility earns a fair rate of return on its capital and

recovers its operating expenses. However, the PUC may disallow a capital expense from being

included in the retail price if it does not meet a standard of being “used and useful.”

Importantly, in California utilities could request to recover uninsured costs associated with fires

ignited by their distribution infrastructure during rate cases between 1999 and 2017. Thus, while

utilities paid for residential damages and suppression costs associated with fires ignited by their

equipment, they expected to recover these costs through an increase in the electricity price cap.

After a 2017 ruling in a rate case proceeding that rejected San Diego Gas and Electric’s application

to recover fire-related costs through electricity rates, utilities faced a greater likelihood that they

would be financially accountable for such costs, increasing their expected liability. The next section

discusses the history of fire liability for utilities in California.

1.2 Liability Regulation in California

Liability regulations impact the incentives for individuals and firms to take risk and exert

precaution. In the case of fire ignited by utility-operated infrastructure, utilities may adjust

their level of precaution according to the proportion of fire-related damages they would be held

accountable for if an ignition occurs. Similarly, individual homeowners may increase effort to reduce

the probability of wildfire-related damage to their property when a firms’ share of liability from

a power line ignited wildfire is low. Regulators choose the degree of liability that a firm faces by
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choosing from two types of regulations: strict liability and a negligence rule. Under strict liability,

the firm is fully liable for the resulting damages of a fire ignited by their equipment. In contrast,

the negligence rule sets a minimum threshold of precaution that firms must meet in order to avoid

financial responsibility for damages. In the canonical model, the firm will take the highest level of

precaution under strict liability and reduce its level of ignition prevention to just meet the threshold

when subject to the negligence rule (Kaplow and Shavell 1999).

In California, the state has held IOUs to a strict liability standard for fire damages since a

1999 state supreme court decision, Barham v. Southern California Edison Company (1999). A key

factor in the Court’s decision was the fact that, just as a government can raise revenue through

taxes, IOUs can raise revenue through retail electricity rates in California.6 The Court reasoned

that since the state government is strictly liable for damages it causes under the Takings clause of

the California constitution, IOUs could be held strictly liable for damages related to power line-

ignited fires. As a result, IOUs faced strict liability for fire damages in excess of their insurance

coverage, but could recover these costs through increases in the retail price of electricity. IOUs

continued to challenge the Court’s ruling in Barham as recently as 2012, arguing that they could

not have the same liability status as a government because their ability to raise rates is subject to

the approval of the CPUC.7 The Court continued to maintain, however, that because there was

no evidence CPUC would not allow IOUs to recover costs through electricity rate increases, strict

liability would continue to apply.

Although IOUs faced strict liability, the precedent established by Barham ensured that their

liability net of revenue increases from raised electricity rates would be low. The precedent that

IOUs could recover liability costs through increased electricity rates was not tested until several

damaging fires ignited by power lines operated by San Diego Gas and Electric in 2007. The 2007

fires were the first time since the Barham decision that the liability costs associated with power

line-ignited fires exceeded an IOU’s liability insurance coverage (Hafez 2020). As a result, San

Diego Gas and Electric’s application to recover uninsured liability costs through electricity rate

increases was a novel test of the strict liability standard. Ultimately, CPUC rejected San Diego

6. The Court’s decision argues that IOUs’ ability to raise electricity rates is akin to a government’s ability to levy
taxes. IOUs are currently challenging this logic in court by pointing out that their ability to raise electricity rates is
subject to approval by the CPUC.

7. Pacific Bell Telephone Co. v. Southern California Edison Co., 208 Cal. App. 4th 1400, 1403 (2012).
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Gas and Electric’s application to recover liability costs through electricity rates in December 2017,

citing San Diego Gas and Electric’s lack of precaution in preventing the 2007 fires as the deciding

factor.8 Because IOUs could no longer expect to automatically recover costs through electricity rate

increases following the 2017 CPUC decision, their liability for fire damages increased dramatically.

CPUC’s decision states that “If the preponderance of the evidence shows that the utility acted

prudently, the Commission will allow the utility to recover costs from the ratepayers.” While CPUC

declined to define a precise negligence threshold in its decision, the decision dramatically increased

each IOU’s expected share of responsibility for liability.

The “prudent manager” standard remained in effect until SB 901 added section 451.1 to the

Public Utilities Commission Code which took effect for all fires ignited after January 1, 2019.

Section 451.1 replaced the “prudent manager” standard with twelve non-exclusive criteria that

CPUC uses to determine whether an IOU can recover costs associated with fire liabilities through

electricity rates. The criteria take into account the IOU’s design, maintenance, and operation of

assets in addition to the severity and unpredictability of the weather event which caused the ignition.

While, section 451.1 clarified the standard used to judge each utility’s negligence it still significantly

increased the share of costs associated with fire damages utilities expected to bear relative to the

pre-2017 regulatory environment. If the reader is interested in learning more about the history of

liability law and IOUs in California, Hafez (2020) provides a complete and succinct description.

The next section describes utilities’ allocation of ignition prevention effort and demonstrates how

increasing the share of damages born by IOUs changes this allocation.

1.3 The ignition prevention decision environment

IOUs face a complex decision making environment as they determine how and where to invest

in strategies that lower the risk of fire ignited by their electrical infrastructure.9 Utilities’ ignition-

prevention decisions have significant economic consequences; despite accounting for 1-5% of total

fire ignitions in Southern California, utility-operated equipment accounts for 20-30% of total area

burned by wildfires (Syphard and Keeley 2015). Ignitions by power lines typically occur between

8. Application of San Diego Gas & Electric Company (U 902 E) for Authorization to Recover Costs Related to
the 2007 Southern California Wildfires Recorded in the wildfire Expense Memorandum Account, filed Sept. 25, 2015.
Decided Dec. 26, 2017.

9. This section draws from Wildfire Mitigation Plans submitted by Southern California Edison, Pacific Gas and
Electric, and San Diego Gas and Electric to CPUC in 2019, 2020, and 2021.
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July and December and their two leading causes are wind-blown vegetation and equipment failure.

Much of the transmission and distribution infrastructure operated by IOUs in California is outdated

(in 2017 Pacific Gas and Electric estimated that the average age of its transmission towers was 68

years old). As climate change has increased vegetative aridity and the severity of weather events

in IOU service territories, the risk of fire ignition has also risen. In determining which areas to

prioritize for ignition mitigation activities, utilities weigh the benefits of providing electricity to their

residential, industrial, and commercial customers with the cost of each activity and the ignition

risk associated with each section of their distribution and transmission infrastructure.

To determine the ignition risk of a section of power line, utilities consider historical and

forecasted weather conditions, infrastructure age, vegetative growth, presence of outdated equipment

with known ignition risk, and the value of electricity demanded by customers on that section.

After determining the baseline risk of a power line segment, a team at each utility then chooses an

ignition mitigation activity which reduces the risk at least cost. Utilities perform a range of ignition

prevention activities including vegetation management, installation of weather stations along power

lines, burying power lines underground, upgrading equipment, inspecting power lines, and turning

off the power to targeted sections of the grid when weather conditions elevate the probability of

ignition. Use of ignition prevention activities differs across utilities and over time as conditions

change and utilities learn more about the effectiveness of each action. For example, Pacific Gas

and Electric primarily deployed shutoff events and infrastructure upgrades in 2019 to reduce the

probability of ignition, while Southern California Edison focused on installing covered conductors

that reduce the probability of ignition on high risk assets. Recently, each IOU has increased efforts

to bury sections of high-risk assets underground.

Precautionary actions available to utilities differ widely in their ability to prevent ignitions, their

cost, and which individuals bear that cost. Power shutoffs, when targeted well, guarantee that an

ignition cannot occur because electricity is not running through the line when an incident occurs.

However, power shutoffs are also socially costly, sometimes leaving affected communities without

power for extended periods of time. In contrast, the effectiveness of other types of precaution such

as vegetation management may be more difficult to measure and impose costs on either the utilities

or (if the cost of precautionary measures is incorporated into retail electricity rates) all electricity

consumers in California.
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Historically, utilities in California have not relied on power shutoffs to reduce the likelihood of

ignition because they disrupt the service of electricity to customers. CPUC defines Public Safety

Power Shutoff events as actions taken by utilities to temporarily turn off power to specific areas

in order to reduce the risk of fires caused by electric infrastructure. Of the three largest IOUs in

California, only San Diego Gas and Electric utilized shutoffs to prevent ignitions prior to 2017.10

Because shutoff events require the utility to interrupt service to customers it is seen as a measure

of last resort to mitigate fire ignitions. As a result, each IOU has invested in devices which further

segment high-risk areas of their transmission and distribution networks, allowing more targeted

blackouts that affect fewer customers.

CPUC approves the use of power shutoff events by IOUs, first granting approval to San Diego

Gas and Electric in 2012, Pacific Gas and Electric in 2018, and Southern California Edison in 2018.

Figure 2 plots the share of total customer hours impacted by shutoff events between 2013 and 2023

by year separately for each of the three largest California utilities. The most affected customer

hours occurred during 2019 in Pacific Gas and Electric’s and Southern California Edison’s service

territories. A similar pattern exists for the number of commercial customer hours and medically

vulnerable customer hours affected by power shutoffs. Between 2021-2023 all three utilities used

power shutoffs less frequently than in previous years, potentially reflecting the transition to longer-

term precautionary actions such as burying power lines underground. This study focuses on firms’

short-run use of precaution between 2018 and 2020, leaving studies of long-run precautionary

behavior for future work.

Utilities consider climatic conditions, the condition of electrical infrastructure, and the value of

lost electricity load in potentially impacted areas to determine when and where to declare power

shutoffs. Pacific Gas and Electric reports the criteria it uses to declare shutoff events on page 982

of its 2021 Wildfire Mitigation Plan. The minimum criteria for deciding a shutoff in a high fire

threat area are sustained wind speeds greater than 20 miles per hour, dead fuel moisture below 9%,

relative humidity below 30%, and a fire potential index greater than 0.2.11 Despite these criteria,

utilities have discretion in declaring power shutoffs: Abatzoglou, Smith, Swain, Ptak, and Kolden

10. San Diego Gas and Electric sought and received approval from CPUC to initiate power shutoffs in its service
territory starting in 2013.
11. The fire potential index measures the likelihood of an ignition causing a catastrophic wildfire using wind speeds,

temperature, humidity, dead and live fuel moisture, and vegetative cover types.
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(2020) provide evidence that shutoff events are used more frequently by Pacific Gas and Electric

than would be implied by their minimum climate criteria.12

According to the canonical economic model of liability regulation, the increase in the share

of liability born by utilities following CPUC’s 2017 decision should increase the level of ignition

prevention effort (Kaplow and Shavell 1999). Furthermore, increasing the liability born by utilities

should also increase their use of more costly prevention activities such as shutoff events. Finally,

the increase in liability should cause utilities to direct ignition prevention efforts to regions of their

service area with a high property values. Since destroyed property values make up a significant

portion of liability damages born by utilities when their equipment ignites a fire, they have an

incentive to direct ignition prevention activities to these regions.

The next section develops a conceptual framework of liability in the context of the electric

utility industry and presents several testable hypotheses.

2 Conceptual Framework

The conceptual framework demonstrates two points: (1) Increasing the level of potential liabilities

could lead firms to use more or fewer power shutoffs. (2) Utilities use more shutoffs when ignitions

are likely.

The framework in this paper is adapted from Lim and Yurukoglu (2018) who show that a

regulator’s inability to commit to a predictable path of capital returns leads utilities to systematically

underinvest in capital. Here, I consider a simplified version of the model with no strategic interaction

between the regulator and the utility. In this model, the utility takes the regulator’s choice of capital

return as given rather than as an output from a negotiation process.

For simplicity, I model a single utility’s decision to make defensive capital investments and

supply electricity to one distribution circuit. If the utility supplies electricity, it receives future

net revenue and faces expected liability damages from a potential ignition along its power lines.

However, if the utility declares a power shutoff it receives no revenue and faces no expected damages.

The utility self protects against expected damages by making defensive capital investments that

12. Abatzoglou, Smith, Swain, Ptak, and Kolden (2020) note that this could be due to differences in climate
modelling between their study and Pacific Gas and Electric’s internal methods.
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reduce the probability of ignition.13 In making its decisions, the firm compares the marginal

reduction in damages from self protection to total expected damages. Whenever expected damages

exceed the marginal benefit of self protection, the firm shuts off the power.

I make several important assumptions in this model. First, because the model only considers

one distribution circuit, the firm will never make additional defensive capital investments if it

shuts off the power. In practice, defensive investments may complement power shutoffs because

utilities could self protect against damages on days when the ignition risk is low. Second, in a

departure from reality, I do not allow for strategic interaction between the firm and the regulator.

The results from Lim and Yurukoglu (2018) suggest that allowing for such interaction would cause

firms to increase shutoff use more and invest in defensive capital less. Third, I do not model

the firm’s non-defensive capital investment decisions. Finally, the model assumes that consumers

value their homes at the structure replacement cost. This simplifying assumption does not affect

the framework’s predictions, but it would increase the benefit of shutoffs for households in the

calculation of how liability regulation affects social welfare in section 6.

2.1 Firm’s Problem

The regulator sets a per unit output price p that allows the utility to recoup a reasonable return

on defensive capital (γk) and per-unit liability costs (ν).

(1) p = γk + ν

Where k represents the stock of firm defensive investment which it uses to self insure against

damages from a potential fire ignition and γ is the exogenous rate of return on defensive investment

that is set by the regulator. The firm inelastically supplies Q units of electricity to consumers who

purchase a quantity Q of electricity up to a “choke” price (p̄) above which they are no longer willing

to pay.

13. I define self protection in the same way as Ehrlich and Becker (1972), where defensive investments reduce the
probability of ignition rather than total damages.
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(2) D(p) =











Q if p ≤ p̄

0 otherwise

The utility earns revenue by supplying electricity to retail consumers and reduces expected

liability costs by renting defensive capital that reduces damages from a potential ignition from

households at the prevailing interest rate (r). The utility can also prevent ignitions by supplying

no electricity to consumers (declaring a power shutoff).

max{π1, π0}

Where

π1(k) = max
k′

{−r(k′ − (1− δ)k) + β(φpQ)}

π0(k) = max
k′

{−r(k′ − (1− δ)k) + β(pQ− θ(k′)d̄)}

Where the utility earns π1 in profits if it shuts off the power and π0 in profits if it supplies

power, δ is the capital depreciation rate, and d̄ is the dollar amount of liability damages if an

ignition occurs. In the empirical analysis later in this paper, d̄ is the total replacement cost of

structures threatened by a power line ignition. The utility can self protect against liability costs by

investing in defensive capital (k′) which reduces the probability of ignition (θ(k′)) or by declaring

a power shutoff which reduces the probability of ignition to zero. When the utility shuts off the

power it recoups a fraction φ ∈ [0, 1] of its revenues by exerting market power in wholesale electricity

markets. β is the per-period discount factor. Substituting the price of electricity from equation 1,

allows us to rewrite the utility’s profit functions.

π1 = max
k′

{−r(k′ − (1− δ)k) + φβ(γk + ν)}

π0 = max
k′

{−r(k′ − (1− δ)k) + β(γk + ν − θ(k′)d̄)}
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If the firm supplies electricity (π0) it pays defensive capital rental costs today and receives future

net revenues (pQ) while facing expected liability costs from a potential ignition (θ(k′)d̄). Whenever

the firm chooses to shutoff the power (π1), it pays capital rental costs today and receives only a

fraction of its revenue in the future, but since an ignition cannot occur it also faces no expected

damages.

When the utility shuts off the power it creates lost producer and consumer surplus. Intuitively,

the utility incurs a private cost from shutoffs through lost producer surplus and benefits from

shutoffs because it faces no expected liability cost. So the utility’s privately optimal choice of

shutoffs depends on the relative magnitude of producer surplus and expected liability costs. Importantly,

the utility does not internalize the loss in consumer surplus when it turns off the power, causing

the utility’s privately optimal choice of shutoffs to exceed the socially optimal level.

Assuming without loss of generality that the utility starts with no defensive capital (k = 0),

solving the firm’s problem when it does not declare a blackout is trivial. When the firm shuts off

the power, its profit is constant regardless of defensive capital investment made by the firm.

π∗

1 = βφν ∀ k
′
∗

1

In the state of the world where it does not declare a blackout (π0) the firm invests in defensive

capital such that the marginal benefit of investment (reduction in expected damages and increased

revenue) equals the marginal cost of investment (the rental rate paid to households).

−βθ′(k′)d̄+ βγ = r(3)

Where−βθ′(k′)d̄ is the reduction in expected liability costs from increasing defensive investment,

βγ is the increase in revenue the firm receives by increasing its defensive capital stock, and r is the

rental rate of capital. The utility then chooses whether or not to declare a shutoff by comparing

its optimized profit when it declares a shutoff (π∗

1
) to when it supplies electricity (π∗

0
). Whenever

the firm can earn greater expected profits by supplying electricity, it does not shut off the power.
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This paper empirically studies how changes in expected liability costs impact utilities’ use of

power shutoffs. I use exogenous variation in wind direction and speed across days to estimate

how utilities’ use of shutoffs changes when they face higher total expected liability costs. In the

model, firms face higher liability costs when the total replacement cost of structures threatened by

a potential ignition (d̄) is large. Increasing d̄ in the model shifts π0 down, but leaves π1 unchanged.

Depending on how large the drop in π0 is, the firm may use more shutoffs or keep supplying

electricity. I show that firms increase their use of shutoffs when areas with higher total structure

replacement cost are threatened by a potential ignition. In addition, utilities should utilize blackouts

more when they face high realizations of the probability of ignition (θ(k′)). As a result, we expect

there to be more blackouts on days when the weather is conducive to fire ignitions along power

lines (prediction (2)). I provide evidence of prediction (2) in Appendix A.

3 Empirical Framework

According to the theory developed in section 2, utilities’ use of shutoffs should respond (either

positively or negatively) to the liability cost they bear. One way to test this hypothesis would be

to estimate a linear model that relates the probability of a shutoff at circuit i on day t (yit) to the

total replacement cost of structures near circuit i (V aluei).

(4) yit = νV aluei + εit

Under the conditional independence assumption, ν identifies the effect of liability on firms’

use of shutoffs. However, the conditional independence assumption is unlikely to hold in this

example because unobserved determinants of shutoffs such as the moisture content of vegetation,

regional weather conditions, and the presence of critical energy infrastructure are likely correlated

with structure replacement costs. To overcome this challenge and isolate the effect of structure

replacement cost on shutoffs, I use daily changes in wind direction to create exogenous variation

in structure replacement costs that would be threatened by an ignition, if it occurred. Since

power line-ignited fires are more likely to occur during periods of extreme wind speeds (Syphard
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and Keeley 2015), wind direction is likely to be a relevant determinant of whether a region is

threatened by a wildfire on any given day, t. Furthermore, since average daily variation in wind

direction is uncorrelated with both power shutoffs and structure replacement costs the conditional

independence assumption likely holds.

To determine which regions lie downwind of power lines in California during each day between

2018 and 2020, I combine real-time data on maximum wind speeds from weather stations operated

by utilities along their electricity infrastructure with an estimate of how long a lit ember could

remain airborne if picked up by the wind from Albini, Alexander, and Cruz (2012).14 Appendix A

describes this procedure.

I use circuit level changes in wind direction across days to assign which zip codes lie downwind

of a utility’s power lines. There are several justifications for using zip codes as the unit of analysis

in this study. First, it uses borders which are determined by the California government, rather

than boundaries that I have chosen myself. Second, using zip codes allows me to control for other

characteristics that are important determinants of utilities’ shutoff use such as population and total

energy use which are not available at finer geographic scales using publicly available data. Finally,

the data on structure replacement costs is available for the universe of parcels in California at the

zip code level, but may be missing at more granular levels of aggregation. In Appendix B, I re-

estimate the relationship between structure replacement cost and shutoff use using only variation

in wind direction within twenty kilometers of power lines, finding similar results to the aggregate

zip code analysis.

Figure 3 demonstrates how I determine downwind structure replacement cost in the empirical

analysis using an example of 13 zip codes from San Diego County in California. The tan zip code

in the center of both panels contains three distribution circuits and the black circles represent the

centroid of each circuit. In my empirical framework, I define each tan zip code in my sample as an

“origin” zip code. All of the white and yellow zip codes lie downwind of the origin zip code at some

point during 2018 and 2020. I define these zip codes as “destination” zip codes because they are

the set of possible destinations where an ember could land if picked up at a circuit in the origin zip

14. Albini, Alexander, and Cruz (2012) estimate that the maximum spotting distance for a wind driven fire is 10
kilometers. Assuming that wind speeds are at the third quartile observed across my sample between 2018 and 2020
(9.5 meters per second), the 10 kilometer estimate implies that an ember could remain airborne for up to 18 minutes.
Estimates are robust to other assumptions of how long a lit ember could remain airborne (such as 5 minutes).
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code. Each black line points in the direction that the wind is blowing, and its end point indicates

how far away from each circuit a lit ember could travel given observed wind speed and direction.

When the black line intersects with a zip code, I define the zip code as downwind of the origin zip

code. Therefore, in panel (a) of Figure 3 the three yellow destination zip codes to the north of the

origin are downwind, while the following day (shown in panel (b)) the three destination zip codes

to the west are downwind. I estimate the relationship between the total replacement cost in the

downwind zip codes and shutoff use at circuits in the origin zip code. As a result, this strategy

uses daily variation in liability that is driven by exogenous changes in wind speed and direction.

Equation 5 formally presents this research design.

Since there may be underlying static characteristics about each zip code, such as geography,

that correlate with shutoff declaration and threatened property values, I construct a paired data

set of origin and destination zip codes and control for a pair fixed effect following Kuhn, Kooreman,

Soetevent, and Kapteyn (2011). For each day t and origin zip code o the data file contains a set

(N(o)) of neighboring destination zip codes indexed by d which are ever downwind of zip code

o between 2018 and 2020. By including pair fixed effects, νod, this strategy accounts for time

invariant characteristics of pairs that may be correlated with structure replacement cost and power

shutoffs, such as underlying vegetation moisture. Furthermore, I include a calendar day fixed effect

which accounts for day-specific unobserved heterogeneity which impacts all zip code pairs, such as

seasonality or statewide climatic factors.

(5) yjodt = β1V alued ×DWjodt + β2V alued + β3DWjodt + β3Xjot + β4Xjdt + νod + δt + γjt + εodt

Where yjodt is a binary variable indicating whether a shutoff is in effect in zip code o which

is ever upwind of zip code d on day t and has power lines operated by utility j. V alued is the

de-meaned log total (or average) structure replacement cost in zip code d and DWodt is equal to

one if zip code d is downwind of zip code o on day t. The model includes time-varying covariates

(Xjot, Xjdt) which are specific to zip codes o and d respectively and include average daily wind

speed, temperature, specific humidity, and maximum wind speed. In order to allow the effect of

the climatic controls to non-linearly impact the outcome, I bin each control variable into septiles.
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The coefficient of interest, β1 may not capture the causal effect of liability on power shutoff

declaration if daily variation in wind direction is correlated with a community’s underlying fire

severity. I account for this possibility by controlling for a categorical measure of underlying wildfire

risk (called the wildfire hazard potential) and the share of zip code population living in a region of

heightened fire risk (share of population living in the Wildland Urban Interface in 2010) interacted

with the downwind indicator. I provide more information on these controls and their sources in

section 4. Finally, I include utility by year fixed effects (γjt) which account for annual changes in

utilities’ plans to prevent ignitions.

Since I de-mean the structure replacement cost in equation 5, β3 is the change in shutoff

likelihood when a zip code with average structure replacement cost is downwind. The coefficient

of interest β1 measures the average percentage point change in the likelihood of a power shutoff

with respect to a one percent increase in downwind structure replacement cost. Furthermore note

that while the coefficient β2 captures the effect of non-threatened property values, it cannot be

estimated because the replacement cost is collinear with the pair fixed effects. Under the conditional

independence assumption, β1 and β3 identify the causal effect of downwind structure replacement

cost on the probability of a shutoff.

4 Data

4.1 Outcomes

Power Shutoff Events I obtain the date, duration, location, and number of impacted customers

from power shutoff post-event reports for the period 2013-2020 from the California Public Utilities

Commission.15 Since Pacific Gas and Electric, Southern California Edison, and San Diego Gas

and Electric serve nearly 80% of electricity consumers in California and account for the largest

share of power shutoffs historically, I restrict the sample to events initiated by one of these utilities.

Furthermore, I exclude publicly owned utilities from this analysis because they have not been

granted the authority to conduct power shutoff events by the regulator. As shown in Table 1,

there were 46 concurrent power shutoffs on the most active day of power shutoffs in my sample.

15. Utilities are required to submit under Ordering Paragraph 1 of California Public Utilities Commission (CPUC)
Decision (D.) 19-05-042.
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However, shutoff events are very infrequent at the daily level, occurring on average 3.1% percent

of total pair-days in the sample. The last row of table 1 shows that there are 546 zip codes in

California that ever experience a shutoff between 2018 and 2020.

Energy Infrastructure Information on the geographic location of distribution and transmission

lines operated by Pacific Gas and Electric, Southern California Edison, and San Diego Gas and

Electric is collected from publicly available Geographic Information System (GIS) files submitted

to the California Office of Infrastructure Safety in 2020. The GIS data shows the location of each

transmission and distribution line within a circuit and exclude critical energy infrastructure. Since

the California Public Utility Commission reports shutoff events at the circuit level, I aggregate the

line level data to the circuit level before string matching events to circuits by circuit name. On

average across the three utilities, I match 97 percent of events to circuits using string matching.

4.2 Treatment and Control Variables

Climate Data I obtained wind speed and direction at ten minute intervals from the 3,041 weather

stations operated by Pacific Gas and Electric, Southern California Edison, and San Diego Gas and

Electric along their energy infrastructure. In addition, I collected information on temperature,

relative humidity, and precipitation from the 892 weather stations operated by the National Weather

Service and Remote Automatic Weather Stations in California.16 For each station, I compute daily

average and maximum temperature, humidity, precipitation, and wind speed. Then, for each circuit

I compute the inverse distance weighted average for each climate variable across all stations within

20 kilometers of the circuit, generating daily average and maximum temperature, relative humidity,

precipitation, and wind speed for each distribution circuit operated by Pacific Gas and Electric,

Southern California Edison, and San Diego Gas and Electric in California. Since station-level wind

data is limited for destination zip codes where Pacific Gas and Electric, Southern California Edison,

and San Diego Gas and Electric have limited or no operations, I obtain wind speeds for destination

zip codes from NOAA’s High Resolution Rapid Refresh (HRRR). HRRR is an atmospheric model

with a 3km grid cell resolution which provides hourly information on wind speed.

Replacement Cost of Structures Since electric utilities are liable for the cost of replacing structures

damaged by power line-ignited fires, I use parcel-level structure replacement costs to measure

16. The weather station data was accessed through the Mesonet API.
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potential damages rather than the market value of each property. I obtain parcel level replacement

costs of each property in California in the year that it is assessed from the Zillow Transaction

and Assessment Database (ZTRAX) which contains parcel-level assessed values and transaction

information for most counties in the U.S.17 Zillow computes the replacement cost by taking the

difference between the market value of the property and the market value of the land in the year

of assessment. I adjust replacement costs to 2021 dollars using the consumer price index.18 As

reported in Table 1, the average replacement cost is substantial at around $6.9 billion and there is

significant variation across zip codes with a standard deviation of $6.6 billion.

Vegetative Cover I use the discrete Wildfire Hazard Potential index to capture underlying

vegetative conditions in the areas surrounding distribution circuits in California.19 Values of the

WHP index indicate wildfire risk and range from 1 (very low) to 5 (very high). The WHP index

is intended to guide strategic long-term management of vegetation and is based on vegetation and

fuels data from LANDFIRE 2014, a collection of databases which describe vegetation and fire

characteristics across the U.S..20 As a result, the WHP reflects vegetative conditions at the end of

2014.

Wildland Urban Interface Since utilities’ decision to declare a shutoff event could be impacted

by whether a circuit is located in an area that is high fire risk, I obtain the boundaries of the

Wildland Urban Interface (WUI) from the California Department of Forestry and Fire Protection’s

Fire and Resource Assessment Program. The WUI is defined as an area with dense housing adjacent

to vegetation that can burn in a wildfire.21 Because the property value analysis is estimated at the

zip code level, I compute the share of total 2010 zip code population living within the WUI.

Energy Use The level of electricity demanded by consumers downwind of a distribution circuit

is likely correlated with both property values and utilities’ decision to declare a power shutoff. To

account for this, I compute annual zip code electricity demanded by residential, commercial, and

17. Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More information
on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the
author(s) and do not reflect the position of Zillow Group.
18. Federal Reserve Economic Data, series CPALTT01USA659N.
19. Dillon, Gregory K; Gilbertson-Day, Julie W. 2020. Wildfire Hazard Potential for the United States (270-m),

version 2020. 3rd Edition. Fort Collins, CO: Forest Service Research Data Archive. https://doi.org/10.2737/RDS-
2015-0047-3
20. The LANDFIRE program is jointly supported by the U.S. Department of Agriculture, the Forest Service, and

the U.S. Department of the Interior.
21. Specific housing density and vegetation thresholds for WUI classification can be found at

https://frap.fire.ca.gov/media/10300/wui19ada.pdf.
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industrial consumers using data from each utility and the California Energy Consumption Database.

Whenever a utility suppresses or aggregates demand across multiple zip codes, I compute annual

zip code demand by subtracting total demand in all zip codes within a county from the total

county-level demand and allocating the remainder to each zip code with suppressed data according

to its share of 2010 county-level population. Average annual electricity demand is approximately

89 GWh in each zip code in my sample. I estimate that 25 zip codes in California have less than

0.5 GWh of annual energy demand, all of which are small and sparsely populated.

Potential Liabilities In order to identify structures that would be threatened by a potential

ignition, I use daily variation in wind direction at the centroid of the area where each distribution

circuit operated by Pacific Gas and Electric, Southern California Edison, or San Diego Gas and

Electric in California overlaps with a zip code. Using data on the daily average wind direction and

maximum wind speed described above, I assign destination zip codes to each origin zip code for

each day of the sample. I describe this process in detail in Appendix A.

Sample Restriction I construct the final sample by dropping all days that do not fall under

the minimum criteria for a shutoff event as defined by Pacific Gas and Electric on p.982 of their

2021 wildfire mitigation plan.22 I make this sample restriction based on the reported wind speeds

and humidity in origin zip codes rather than destination zip codes because this reflects climate

conditions around the power lines themselves. I further drop months where no shutoff events occur

between 2018 and 2020 since these months do not help identify the coefficient of interest from model

5. In Appendix A, I demonstrate that the estimated results are not substantially affected by this

sample restriction. The final sample consists of a daily panel of 10,687 unique origin-destination

zip code pairs. Due to the sample restriction mentioned above, humidity is always less than 30%

and wind speeds are always greater than 20 miles per hour. Downwind climate conditions refer to

the average across all zip codes downwind of a distribution circuit.

22. The minimum criteria are wind speeds greater than 20 mph and relative humidity less than 30%. Pacific Gas
and Electric has many other criteria for declaring a shutoff, but these are the minimum criteria that I can observe
using the publicly available climate data.
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5 Results

In settings where firms’ assets are significantly less than their liability costs from an accident, it

may be optimal for firms to declare bankruptcy (Shavell 1986). A common solution to this problem

posed by regulators is to cap firm liability, providing incentives for precaution without leading to

bankruptcy. However, because prior estimates of firms’ precautionary response to liability are from

one point in the distribution of potential liabilities, regulators have limited information about which

level to place the cap on damages. The estimates in this section leverage firms’ full distribution of

potential liabilities from power line-ignited fires, flexibly estimating the precautionary response to

liability.

Table 2 reports the main results from regression model 5. The coefficient of interest is reported

in row 1 and is interpreted as the percentage point change in power shutoff declaration probability

that results from a 10 percent increase in the replacement cost of downwind structures relative to

days when the properties are not downwind. Since I de-mean the replacement cost of structures,

the estimate in row 2 reflects the change in shutoff likelihood when a zip code with average total

replacement cost lies downwind. Column 1 reports the unconditional estimate of a ten percent

increase in downwind structure replacement costs on utilities’ use of power shutoffs, column 2

controls for daily climate characteristics at each origin and destination zip code, column 3 adds

origin-destination zip code pair fixed effects, and the preferred specification in column 4 adds

calendar day and utility-by-year fixed effects. The estimate in Column 4 suggests that, on average,

utilities are 0.03 percentage points (100%) more likely to use a power shutoff when a region with

10% higher total zip code replacement cost lies downwind and is statistically significant at the 95%

confidence level. Assuming that baseline total replacement cost is at the average level I observe

in the sample ($6.9 billion) implies that shutoff use increases by 100% when potential liabilities

increase by $690 million.

Since total structure replacement cost and population are positively correlated, the positively

estimated relationship between total liability and shutoff use in Table 2 could reflect utilities’

increased willingness to undertake precaution when densely populated regions lie downwind. To

assess whether utilities’ shutoff use responds to the typical liability in downwind zip codes rather

than total liability, I re-estimate equation 5 using the average structure replacement cost in downwind
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zip codes rather than the total. Column 2 of Table 3 presents the estimates from this analysis,,

suggesting that utilities use shutoffs 0.17 percentage points more when the mean downwind zip

code structure replacement cost is about 1 standard deviation higher.23 The point estimate is

marginally insignificant at the 95% level and qualitatively similar to utilities’ estimated response

to total liability.

Although prior work suggests that the relationship between liability and precaution should be

nonlinear, the estimates in table 3 assume a linear relationship. I relax this linearity assumption

by binning total zip code replacement cost by decile and re-estimating equation 5. Figure 4 reports

the resulting estimates of downwind total replacement cost on power shutoff use. The estimates in

figure 4 suggests that shutoff use increases in total structure replacement cost until liability exceeds

$10 billion (the eighth decile of total replacement cost), after which it begins to decrease.

Shavell (1986) posits that as the ratio of liability to assets increases, the firm will eventually

begin to take fewer precautions to prevent an accident. I can directly test this prediction by

redefining the treatment variable of interest in equation 5 as the ratio of potential liabilities to each

firm’s total asset value for each destination zip code in the sample.24 As above, I bin the asset share

by decile to allow for non-linearity in the relationship between liability and firms’ precautions.

Figure 5 reports the point estimates and their associated 95% confidence intervals separately

for destination zip codes with low (panel A) and high (panel B) underlying fire risk. If liability

regulation is effective in this setting, then firms should use greater precaution where expected

liability and fire risk are the highest. Conversely, if firms are judgment proof, then precautions

should increase at low levels of expected liability and decrease at higher levels of expected liability.

Figure 5, Panel A shows that when expected fire risk is low, precaution is positively related to

the ratio of liability to asset value. The point estimates are significant at the 95% confidence level

until the ninth decile of firms’ liability-asset share, suggesting that shutoff use may be lower when

low-fire risk, high liability regions lie downwind.

Since expected liability is higher for downwind zip codes with more extreme fire risk, judgment

proof firms should be less responsive to potential liabilities when high risk regions are downwind.

23. In Appendix A, I estimate robustness specifications that explicitly control for population. While I find that
downwind population is a relevant determinant of shutoff use, it does not alter the estimates in table 3.
24. Specifically, I calculate the ratio of total zip code replacement costs to PG&E, SCE, and SDG&E’s 2022 total

asset values.
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Figure 5, Panel B presents the same relationship between the liability-asset share and power

shutoff use for destination zip codes with high underlying fire risk. Almost all point estimates

are insignificant at the 95% confidence level and do not increase with the liability-asset share.

Overall, the results from this regression suggest that firms’ precautions increase with their

potential liability until expected liabilities are a large share of each utility’s total asset value. This

finding is consistent with predictions of the judgment proof problem and highlights the importance

of market structure in determining the effectiveness of liability regulations. Since the firms in

this setting are natural monopolies, the judgment proof firms will continue to operate even after

declaring bankruptcy. This lies in stark contrast to Boomhower (2019) which finds evidence of

market concentration as smaller, judgment proof firms exit the market following a regulation which

internalized future expected liabilities from environmental accidents. In this setting market power

is already concentrated and firms are still judgment proof, limiting the effectiveness of liability

regulation to direct firm precaution to the regions with high expected damages.

5.1 Robustness

Factors such as vegetation conditions near power lines, extent of interaction between housing and

wilderness, and energy consumption patterns could drive utilities’ use of shutoffs. If these factors are

also correlated with structure replacement costs, then the estimated relationship between shutoffs

and potential liability could be biased. In table 4, I estimate several modifications of regression

model 5 to test the robustness of the preferred estimate in table 2. Column 1 replicates the preferred

estimate from table 2. Column 2 adds a control for the share of total population in destination zip

code d living in the WUI interacted with the downwind indicator, DWodt. This covariate captures

daily changes in the number of structures near vegetation that is likely to burn in the event of a fire.

In column 2, I also control for the average WHP index in each destination zip code interacted with

the downwind indicator. This covariate measures the propensity of vegetation in the downwind zip

code to spread fire. Column 3 adds separate controls for monthly electricity usage in the origin

and destination zip codes respectively. These additional covariates capture patterns in electricity

usage that are relevant to firms’ shutoff decision.

The empirical model in equation 5 uses daily changes in downwind structure costs to estimate

the relationship between shutoffs and liability. However, evidence suggests that utilities monitor
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forecast wind conditions in addition to current conditions. As a result, utilities may base their

shutoff decisions on their expectation of which regions will be downwind in the upcoming days. To

account for this behavior, I define a destination zip code as downwind if it lies downwind of the

origin zip code at any time in the next five days. For example, the downwind indicator, DWodt, is

set equal to one if a destination zip code is downwind anytime over the next five days (between day t

and day t+5). I report the results from this specification in column 4 of table 4. The main estimate

of interest is positive, statistically significant, and of a similar magnitude in all specifications.

Since the empirical framework in equation 5 is specified at the zip code level, it may include

properties that are located far away from high-ignition risk circuits. If utilities only consider

structures that are very close to high-risk power lines (and therefore very likely to be destroyed if

an ignition occurs), then the zip code analysis could be misspecified. In appendix A, I address this

by estimating equation 5 at the circuit level. I do this by using daily variation in the replacement

cost of structures that lie downwind of power lines and are located within 20 kilometers of a circuit.

Using this local variation, I estimate similar effects to the preferred estimate in table 2.

6 Discussion and Conclusion

This paper provides the first causal evidence of how firms’ precautions responds to liability

across the full distribution of potential liabilities that they face. I document a nonlinear relationship

between potential liability and firm precautions in California’s electric utility sector, showing that

firms increase precautions until liabilities are extreme. While this is a novel result that helps inform

existing models of firm precautions, it can also be used to determine how the application of strict

liability to investor-owned electric utilities in California affected social welfare. The welfare effects

of strict liability are unclear in this setting because the type of precaution firms utilize in the

short run, power shutoffs, provide both positive and negative welfare consequences to Californians.

Power shutoffs generate positive welfare effects because they reduce the likelihood of fire ignition by

power lines. However shutoffs also leave consumers without power, sometimes for extended periods

of time. In the short run, the net change in social welfare depends on the relative magnitude of

averted damages from power shutoffs and the value of consumers’ lost electricity use during shutoffs.

The long-run welfare consequences of liability in this setting additionally depend on the relationship
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between power shutoffs and other types of precautions like burying power lines underground, the

relative effectiveness of shutoffs versus other types of precautions, and the long-run effect of liability

on other types of precautions such as electrical grid hardening. Since this paper is focused on firms’

short-run precautionary response to liability, I leave the long-run welfare consequences of liability

regulations for future work.

6.1 Short Run Welfare

Thus far, I have provided empirical evidence suggesting that precautions and liability are

positively related when expected liabilities make up a small fraction of total firm asset value and

unrelated when the ratio of expected liabilities to firm asset value is large. The welfare implications

of this relationship are ambiguous for two key reasons. First, power shutoffs impose costs on

households that lose power while also preventing structure destruction from power line ignited

fires, ambiguously affecting household welfare. Second, shutoffs may increase or decrease firm

welfare depending on whether firms’ response to downwind liabilities increases or decreases their

expected liability payments.

Using the conceptual framework from section 2, I derive the short-run welfare change resulting

from an increase in liabilities from a potential ignition in Appendix D. Since this study focuses

on liability, I compute the difference in welfare change when firms use power shutoffs to respond

to downwind potential liability (∆WF (d̄)) and the welfare change when firms do not respond to

potential liability (∆WFR(d̄)).

(6)

∆WF (d̄)−∆WFR(d̄) =− p̄Q

[

P (L | d̄′)− P (L | d̄)

]

+

θ

[

d̄′P (L | d̄′)− d̄P (L | d̄)− (d̄′ − d̄)P (L | d̄)

]

Where p̄ is the consumers’ maximum willingness to pay per kilowatt hour, Q is the amount of

electricity consumed by households, d̄ < d̄′ are damages that firms are liable to pay, P (L | d̄) is the

probability of a power shutoff, and θ is the probability of ignition from power lines.

Three parameters characterize the relative short-run welfare change from a change in damages

when shutoffs do versus do not depend on potential liabilities in equation 6: (1) the change in
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probability of shutoff event following an increase in the share of liability born by firms (P (L = 1 |

d̄′)−P (L = 1 | d̄)), (2) the relative change in expected damages when firms do and do not respond

to potential liabilities (d̄′P (L | d̄′) − d̄P (L | d̄) − (d̄′ − d̄)P (L | d̄)), and (3) consumers’ maximum

willingness to pay for electricity (p̄).

There are several important caveats to the welfare change represented in equation 6. In the

model, consumers value their home at its replacement cost and receive a payment from the utility

equal to the home replacement cost if the structure burns down. As a result, households in this

model are indifferent whether or not their home burns down. In practice, consumers may have a

value of their home which exceeds the replacement cost, causing consumer surplus to potentially

increase when firms use more shutoffs. Thus, the welfare change in equation 6 is likely larger (in

absolute terms) than a more detailed model that incorporates intrinsic home values.

I also assume that the adjustment of defensive capital cannot occur in the short term (making

term three in Appendix D, equation 5 equal to zero). Since the sample includes three post-policy

years and the utilities have extensive networks of power lines, the extent of defensive capital

investment is limited in this setting. However, future analyses of defensive capital’s impact on

the likelihood of ignition would be informative.

To compute the welfare change in equation 6 for each zip code, I use the estimated relationship

between liability and power shutoff use from this paper, estimates of the probability of power line

fire ignitions in each zip code, data on total zip code energy demand, the distribution of structure

replacement costs downwind of each zip code, an estimate of consumers’ valuation of lost electricity

demand during a power outage, and power shutoff duration in hours. Appendix E explains this

process in detail. I add the welfare effects across zip codes to calculate the total welfare effect of

firms’ consideration of potential liability in their decision to declare a power shutoff.

The welfare effects vary greatly across zip codes and depend heavily on how long a shutoff lasts

and consumers’ valuation of lost electricity use. Since there is a wide range of empirical estimates of

the value of lost load, I bound the short run welfare effect using the smallest and largest estimates

from the existing literature. The largest estimate of the value of lost load from Gorman (2022)

is $65 per kWh, while the smallest estimate for my sample period is the average retail price of

electricity in California in 2018 ($0.20 per kWh). In addition, I separately calculate the welfare

effect using the average and maximum power shutoff outage duration for each utility between 2018

28



and 2020.

Using the higher value of lost load estimate implies that total welfare declines when firms’

shutoff use responds to potential liabilities, with $317 million in lost welfare from a shutoff of

average duration and $6 billion in lost welfare from a shutoff of maximum duration. Welfare effects

vary greatly across zip codes, indicating that there may be meaningful differences in the welfare

cost born by different communities across California.

The lower value of lost load estimate ($0.2 per kWh) indicates that total welfare increases when

firms consider potential liability in their shutoff decisions, with $867 million in total welfare gain

from a shutoff of average duration and $848 million in total welfare gain from a shutoff of maximum

duration. Again, the welfare effects vary greatly across zip codes. These welfare estimates highlight

the importance of the value of lost load (and studies that estimate it) in determining the welfare

consequences of economic policies which impact reliability in the energy sector and the meaningful

welfare impacts of reducing the duration of power shutoffs.

6.2 Conclusion

In this paper I use exogenous daily variation in wind direction to estimate the causal relationship

between liability and short-run firm precaution across the full distribution of liabilities that firms

face in California’s electric utility sector. Theoretical models of firm behavior suggest that the

firm precaution responds ambiguously regulator’s application of liability and that firm precaution

should respond non-linearly to the level of liability that it faces. Prior empirical work estimates the

relationship between liability and firm precaution at one point in the distribution of liabilities that

it faces, ignoring important non-linearities in firm precaution. This paper advances the previous

empirical literature by developing an empirical framework that can estimate the causal relationship

between liability and firm precaution across the full distribution of liabilities it faces, capturing

important non-linearities.

To evaluate the effectiveness of liability regulations, I study California’s electric utility sector, a

setting where firms face extreme liability from fires ignited by the power lines that they operate. I

construct a daily panel of upwind-downwind zip code pairs across California between 2018 and 2020

and use exogenous daily variation in wind direction to estimate how firms use of power shutoffs

to prevent fire ignitions changes as the value of structures downwind of their power lines varies.
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Since the empirical framework leverages daily variation in wind direction and I control for other

important drivers of firms’ power shutoff use such as wind speed, I am able to causally estimate

the relationship between liability and firm precaution.

This paper finds that firms increase precautions in response to the level of liability that they face.

However, firms’ precautionary response to liability is highly non-linear: firms are very responsive to

the level of liability that they face at lower levels of liability, but are less responsive at the highest

deciles of liability that they face. This result provides evidence that the risk of bankruptcy when

potential liabilities exceed firm value likely dampens firms’ precautions.

There are several key implications for policymakers from this paper: First, liability encourages

firms to direct greater precaution to areas with the highest expected damages until damages make

up a large share of firm asset value. If policymakers’ objective is to direct precautions to the regions

with greatest expected damages, then liability regulation alone is ineffective. Second, policymakers

can influence which ignition prevention efforts the utility undertakes by clearly defining which

strategies will allow the utility to avoid a negligence ruling. In the California context, the 2017

rule change and subsequent rule amendments did not clearly specify what utility actions (or lack

thereof) would lead them to be negligible for fire damages. This lack of clarity may have led

utilities to use shutoff events as a signal that they are not acting negligently, leading to an overuse

of blackouts at the expense of longer term mitigation investments. Third, since the welfare effects of

liability vary significantly across zip codes, policymakers should be wary of potential distributional

consequences of liability regulations.

There are several areas where future research can extend this analysis to further inform our

knowledge of liability regulations and how they impact firm precaution in the power line-ignited fire

setting. First, future research should explore whether the circuits with the highest welfare loss from

an increase in liability are located in areas with a large share of disadvantaged community members.

For example, if expected damages are low and the value of lost load is high in disadvantaged

communities, then this implies that increasing the share of liability on firms is regressive in this

setting. Second, future studies should take a longer term view of the impact of liability regulation

on utilities’ ignition prevention behavior. Although liability regulation has an ambiguous welfare

impact in the short term, it could be beneficial in the long term if it encourages precautionary

activities that both reduce the likelihood of ignition and the probability that a power shutoff occurs.
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Finally, more work is needed to identify which ignition prevention strategies most effectively reduce

the likelihood of a fire caused by power lines.25 In particular, cost benefit analyses may need to

be revised to account for the fact that capital investments both reduce the probability of ignitions

and blackouts in the future.

25. Warner, Callaway, and Fowlie (2024) provides helpful information on long-term precautionary behavior by
collecting data on other measures of ignition prevention, such as burying power lines.
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7 Tables

Table 1: Zip Code Pair Panel Summary Statistics

Mean (SD) Min Max N

N Shutoffs 0.111 0 46 433,201
(0.94)

Shutoff (0/1) 0.031 0 1 433,201
(0.17)

Replacement Cost (Billions) 6.850 0 37 433,201
(6.57)

Median Replace Cost (Thousands) 52.739 0 223 433,201
(27.73)

Percent of Asset Value (%) 764.908 0 4,840 433,201
(783.22)

Temperature (F) 38.977 31 90 433,201
(5.02)

Humidity (%) 9.348 0 30 433,201
(7.20)

Wind Speed (mph) 24.108 20 88 433,201
(4.20)

Downwind Temp. (F) 58.644 10 106 420,499
(11.41)

Downwind Humid. (%) 55.235 2 100 420,499
(24.66)

Downwind Wind Speed (mph) 15.479 2 82 420,499
(6.85)

Downwind WHP Index 3.026 0 5 433,201
(1.01)

Downwind WUI Pop (%) 0.389 0 37 433,201
(2.02)

Annual Energy Use (GWh) 89.946 0 649 431,518
(104.86)

Downwind Annual Energy Use (GWh) 89.151 0 649 429,503
(103.52)

N Zip Codes 546.000

Notes: Wind and weather data is taken from weather stations operated by utilities in California and interpolated to
each distribution circuit centroid using inverse distance weighting. Total replacement costs are taken from the Zillow
ZTRAX dataset and converted to 2021 dollars. Median replacement costs are computed for each zip code from the
parcel-level Zillow data. Disadvantaged community (DAC) status comes from the CalEnviroScreen 3.0 update and is
computed as the share of total 2010 zip code population living in a census tract categorized as a DAC. The number
of zip codes denotes the total number of zip codes that ever experience a shutoff during 2018-2020.
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Table 2:
Effect of Total Zip Code Replacement Cost on the Probability of a Shutoff

Shutoff Indicator Shutoff Indicator Shutoff Indicator Shutoff Indicator
(1) (2) (3) (4)

Value x DW 0.00565 0.00578 0.03033 0.02924
(0.00345) (0.00375) (0.01113) (0.00914)

DW -0.03761 -0.04325 0.10939 0.08343
(0.01243) (0.01365) (0.03500) (0.02491)

Controls x x x
Pair FE x x
Utility x Year FE x
Day FE x
Mean of Dep. Var 0.031 0.031 0.031 0.031
Observations 433,205 420,503 420,331 420,329

Notes: Wind and weather data is taken from weather stations operated by utilities in California and interpolated to
each distribution circuit centroid using inverse distance weighting. Total replacement costs are taken from the Zillow
ZTRAX dataset and converted to 2021 dollars. The underlying data consists of pairs of upwind, ever-downwind zip
codes for every day during select days between 2018-2020. The outcome is a binary variable equal to 1 if a shutoff
event is active in origin zip code o. Value measures the total cost of replacing structures in each destination zip code
d and DW is a binary variable equal to 1 when zip code d is downwind of zip code o on day t. Controls include daily
average temperature, relative humidity, precipitation, and maximum wind speed binned by septiles for each origin
zip code o and destination zip code d. Standard errors are clustered at the high fire threat district by calendar week
level.
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Table 3:
Effect of Total and Mean Zip Code Replacement Cost on the Probability of a Shutoff

Total Value Mean Value
(1) (2)

Value x DW 0.02924 0.03224
(0.00914) (0.01773)

DW 0.08343 0.07256
(0.02491) (0.02269)

Controls x x
Pair FE x x
Day FE x x
Mean of Dep. Var 0.031 0.031
1 SD Effect 0.386 0.174
Bootstrap 95% CI [0.010,0.048] [-0.0001,0.07]
Observations 420,331 420,331

Notes: Wind and weather data is taken from weather stations operated by utilities in California and interpolated to
each distribution circuit centroid using inverse distance weighting. Total replacement costs are taken from the Zillow
ZTRAX dataset and converted to 2021 dollars. The underlying data consists of pairs of upwind, ever-downwind zip
codes for every day during select days between 2018-2020. The outcome is a binary variable equal to 1 if a shutoff
event is active in origin zip code o. Value measures the total (Column 1) or mean (Column 2) cost of replacing
structures in each destination zip code d and DW is a binary variable equal to 1 when zip code d is downwind of zip
code o on day t. Controls include daily average temperature, relative humidity, precipitation, and maximum wind
speed binned by septiles for each origin zip code o and destination zip code d. Standard errors are clustered at the
high fire threat district by calendar week level.
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Table 4:
Robustness Analysis Estimates

Main Model WUI Controls Usage Controls 5 Day Treatment
(1) (2) (3) (4)

Value x DW 0.02920 0.02130 0.02258 0.02286
(0.00914) (0.00897) (0.00763) (0.00803)

DW 0.06954 0.20841 0.04543 0.04999
(0.02144) (0.06104) (0.01589) (0.01844)

Controls x x x x
Pair FE x x x x
Day FE x x x x
Mean of Dep. Var 0.031 0.031 0.031 0.031
1 SD Effect 0.385 0.281 0.298 0.302
Observations 420,329 420,329 415,148 420,329

Notes: Column 1 replicates the main estimate from column 4 of table 2. Column 2 adds controls for the share of
total population in zip code d living in the Wildland Urban Interface. Column 3 adds controls for monthly zip code
electricity usage in zip codes o and d separately. Column 4 assigns a destination zip code (d) as downwind if it is
downwind anytime in the next 5 days (from t to t+5). Wind and weather data is taken from weather stations operated
by utilities in California and interpolated to each distribution circuit centroid using inverse distance weighting. Total
replacement costs are taken from the Zillow ZTRAX dataset and converted to 2021 dollars. The underlying data
consists of pairs of upwind, ever-downwind zip codes for every day during September-December 2019-2020. The
outcome is a binary variable equal to 1 if a shutoff is active in origin zip code o. Value measures the total structure
replacement cost in each destination zip code d and DW is a binary variable equal to 1 when zip code d is downwind
of zip code o on day t. Standard errors are clustered at the high fire threat district by calendar week level.
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8 FIGURES

Figure 1:
Share of Wildfire Ignitions (1910-2016) and Damages (2008-2019) by Source

Notes: Share of total wildfire ignitions in California by cause of ignition between 1910 and 2016 are shown in yellow.
The “Other” category includes fires caused by arson, debris, smoking, camping, playing with fire, railroads, lumber,
equipment, and vehicles. Data are from Keeley and Syphard (2018). Share of total wildfire damages by ignition
cause between 2008 and 2019 in California are shown in blue. Damages are defined as the replacement cost of homes
destroyed by wildfire. The “Other” category includes fires caused by arson, debris, smoking, camping, playing with
fire, railroads, lumber, equipment, and undefined cause. Data were collected by the author from CalFire historical
wildfire activity data, also referred to as “redbooks.”
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Figure 2:
Share of Total Customer Hours Impacted by Shutoff Events

Notes: Total customer hours computed by the author from public safety power shutoff post event reports. The share
is computed by dividing impacted customer hours in each year by each utility’s cumulative customer hours impacted
by shutoff events between 2013 and 2023. Customer hours include commercial and residential customers served by
California’s three largest privately-owned utilities, Pacific Gas and Electric, Southern California Edison, and San
Diego Gas and Electric. Reports are available from the California Public Utility Commission.

41



Figure 3:
Example of Regions that are Downwind of Power Lines Across Days

(a) Oct. 10, 2019 (b) Oct. 11, 2019

Notes: Daily variation in which zip codes are downwind of zip code 95917 (shown in tan) on October 10 and 11,
2019. The yellow and white shaded zip codes are the set of zip codes that are downwind of 95917 on any day
between 2018 and 2020. The yellow zip codes are downwind of 95917 on a given day and the white zip codes are not
downwind on the day shown. The black dot is the centroid of an electrical distribution circuit in zip code 95917 and
the black line indicates the maximum daily wind direction and speed at the circuit on the day shown. The black line
is using maximum daily wind speed and direction, an estimate of how far the wind can carry a lit ember from Albini,
Alexander, and Cruz (2012), and several trigonometric identities. I calculate the total structure replacement cost for
the yellow and white zip codes and changes in liability are generated by variation in wind direction and speed across
days.
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Figure 4:
Results by Decile of Total Zip Code Replacement Cost
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Notes: Wind and climate data is taken from weather stations operated by utilities in California and interpolated
to each distribution circuit centroid using inverse distance weighting. Replacement costs are taken from the Zillow
ZTRAX dataset. The underlying data consists of pairs of upwind, ever-downwind zip codes for selected days during
2018-2020. Only days with wind speeds greater than 20 mph and relative humidity less than 30% are included in the
sample. The outcome is a binary variable equal to 1 if there is an active shutoff in origin zip code o. The variables
of interest are indicator variables for whether the total replacement cost in each destination zip code d is in one of
ten bins on days when it lies downwind of zip code o. The excluded category is decile one, so all estimates represent
the impact of threatened property values in each decile relative to the first decile. Controls include daily average
temperature, wind speed, humidity, and maximum wind speed binned by septiles for each origin zip code o and
destination zip code d. Standard errors are clustered at the high fire threat district by calendar week level.
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Figure 5:
Results by Decile of 2022 Firm Asset Damage Share
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(a) Low/Moderate Fire Risk
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(b) High Fire Risk

Notes: Wind and climate data is taken from weather stations operated by utilities in California and interpolated
to each distribution circuit centroid using inverse distance weighting. Replacement costs are taken from the Zillow
ZTRAX dataset. The underlying data consists of pairs of upwind, ever-downwind zip codes for selected days during
2018-2020. Only days with wind speeds greater than 20 mph and relative humidity less than 30% are included in the
sample. The outcome is a binary variable equal to 1 if there is an active shutoff in origin zip code o. The variables
of interest are indicator variables for whether the total replacement cost in each destination zip code d is in one of
ten bins on days when it lies downwind of zip code o. The excluded category is decile one, so all estimates represent
the impact of threatened property values in each decile relative to the first decile. Controls include daily average
temperature, wind speed, humidity, and maximum wind speed binned by septiles for each origin zip code o and
destination zip code d. Standard errors are clustered at the high fire threat district by calendar week level.
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